

DATOS DEL CLIENTE ®

.DEMO WIND

Yesid Antonio Gómez

Iñaki Goenaga St, 5

Eibar Guipuzkoa

DATOS DE LA MÁQUINA DATOS DEL COMPONENTE

ID: WTG01

Marca: BUREAU VERITAS
Modelo: 125 - BV 100X
N. Serie: 123456

S/Ref.: W-BV-003 **Descripción:** WIND TURBINE

Ref.: DEMO4-A-S90.1
Tipo: Grupo Hidráulico

Lubricante: MOBIL DTE 10 EXCEL 32

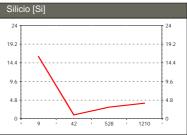
Marca: Winergy, Flender GmbH

Modelo: BV152636 N. Serie: 1259687

S/Ref.:

Descripción: Unidad central hidráulica

DIAGNÓSTICO ÚLTIMA MUESTRA



	RESULTADOS			
Número de muestra:	1210	528	42	9
Aceite: (2)	MOBIL DTE 10 EXCEL 32	MOBIL DTE 10 EXCEL 32	MOBIL DTE 10 EXCEL 32	MOBIL DTE 10 EXCEL 3
Serv. máquina: (2)	78000 H	56000 H	45000 H	28000 H
Serv. aceite: (2)	21000 H	18000 H	15000 H	10300 H
Fecha toma: (2)	29/01/2019	12/12/2018	06/06/2018	01/01/2018
Fecha recepción:	26/02/2019	12/12/2018	06/06/2018	01/01/2018
Fecha 1ª publicación:	26/02/2019	12/12/2018	06/06/2018	01/01/2018
Estado				
Aspecto	Turbio	Transp. Claro	Transp. Claro	Transp. Claro
Agua-Gas	N.D.	N.D.	N.D.	N.D.
Partículas	N.D.	N.D.	N.D.	N.D.
Índice IR (%)	99.81	99.96	99.97	99.82
Oxidación (A/cm)	<1	<1	<1	<1
TAN (mg KOH/g)	0.15	0.11	0.09	0.01
Viscosidad a 100°C (mm2/s)	6.305	6.7	6.9	6.3
Viscosidad a 40°C (mm2/s)	31.19	32	33	31.2
Indice Viscosidad (Adim)	158	173	176	158
Boro [B] (mg/kg)	0	0	0	0
Bario [Ba] (mg/kg)	0	0	0	0
Calcio [Ca] (mg/kg)	96	94	95	30
Magnesio [Mg] (mg/kg)	1	1	0	0
Molibdeno [Mo] (mg/kg)	0	1	0	0
Fósforo [P] (mg/kg)	392	358	361	2 <u>56</u>
Azufre [S] (mg/kg)	2023	1650	1500	1600
Zinc [Zn] (mg/kg)	22	0	0	0
Contaminación				
Agua (mg/kg)	<u>460</u>	<u>350</u>	36	63
Potasio [K] (mg/kg)	0	0	0	2
Sodio [Na] (mg/kg)	2	1	1	1
Silicio [Si] (mg/kg)	4	3	1	16
ISO 4406/2021 (Adim)	20/18/16	19/17/15	18/16/14	19/17/15
Desgaste				
Aluminio [Al] (mg/kg)	0	0	0	0
Cromo [Cr] (mg/kg)	2	1	0	1
Cobre [Cu] (mg/kg)	2	0	1	3
Hierro [Fe] (mg/kg)	13.	3	2	9
Níquel [Ni] (mg/kg)	0	1	0	0
Plomo [Pb] (mg/kg)	0	2	1	0
Estaño [Sn] (mg/kg)	1	0	0	0
PQ Index	15	11	5	10
eyenda: Normal <u>Vigilar</u> Peligro	~			
	X	Δ	V	X

Realizado por: Unai Zulaika Diagnosticador 17/09/2019

Estos ensayos no han sido realizados en Lubrication Management

Informe de ensayo Ref: 5-1-2023-1210-2.Modificación 2/3

DATOS DEL CLIENTE

.DEMO WIND Yesid Antonio Gómez

Iñaki Goenaga St, 5

Eibar

VERTIAS	Guipuzkoa
ANEXO	
7.11.27.0	
El presente informe sustituye al Ref: 5-1-2023-1210-1.Modificación. Los ca	ambios realizados son los siguientes:
	Unai Zulaika
	Diagnosticador 17/09/2019
	17/09/2019

Estos ensayos no han sido realizados en Lubrication Management

DATOS DEL CLIENTE

.DEMO WIND Yesid Antonio Gómez

Iñaki Goenaga St, 5

Eibar

Guipuzkoa

Las normas de ensayo corresponden a la muestra 1210. Para conocer los métodos utilizados en las muestras anteriores consulte el informe correspondiente.

	Métodos de ensayo
Estado	
Aspecto	(PE-TA.096)
ndice IR (%)	(PE-TA.071)
Oxidación (A/cm)	(ASTM D7414-21) Differential Trending
ΓΑΝ (mg KOH/g)	(PE-TA.043_5.2 potencio. basado en ASTM D664-18e2)
/iscosidad a 100°C (mm2/s)	(PE-TA.054 basado en ASTM D445-21e1)
/iscosidad a 40°C (mm2/s)	(PE-TA.054 basado en ASTM D445-21e1)
ndice Viscosidad (Adim)	(ASTM D2270-10(2016)
Boro [B] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Bario [Ba] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Calcio [Ca] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Magnesio [Mg] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
	(PE-TA.007 basado en ASTM D5185-18)
Molibdeno [Mo] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Fósforo [P] (mg/kg)	
Azufre [S] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
^{Zinc} [Zn] (mg/kg) Contaminación	(PE-TA.007 basado en ASTM D5185-18)
	(DE TA COLLEGE AS ACTAL DOCOL OF DAY D)
Agua (mg/kg)	(PE-TA-084 basado en ASTM D6304-20 Proc. B)
Potasio [K] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Sodio [Na] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Silicio [Si] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
SO 4406/2021 (Adim)	(ISO 4406: 2021)
Contaje de partículas (Adim)	(ASTM D7647-10 (2018))
Desgaste	
Aluminio [Al] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Cromo [Cr] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Cobre [Cu] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Hierro [Fe] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Níquel [Ni] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Plomo [Pb] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
Estaño [Sn] (mg/kg)	(PE-TA.007 basado en ASTM D5185-18)
PQ Index	(PE-TA.024 basado en ASTM D8184-18e1)

Estos ensayos no han sido realizados en Lubrication Management